A list of puns related to "Paley, Austin And Paley"
Max and Luna have a lot of upcoming scenes together
Obies reaction to Aki coming out will be explored
There will be a prom episode in S2!!!!
Kathryn Gallagher is playing Obies sister
AKI IS GONNA HAVE A TIKTOK - and the account apparently follows Savannah on TikTok
Every season will have an episode outside of NYC - season 2โs will be outside of the country
The phone call about Julien is the backbone of the entire rest of the season (and potentially the series)
Shooting for season 2 begins mid-January
I'm in between on it only because it doesn't say if you could get pictures with the cast or not but all it mentions is a Q&A and something else but I forgot.
Due to the Paley Center Screening, the first two episodes of Season 2 will be available to a limited number of people on 6/5, a week before Season 2 officially starts and the episodes properly air at 6/12 and 6/19. As such, this is how we will handle spoilers:
Any/all discussion, art, anything at all related to the first two episodes may be posted to /r/AzuraBookClub. Absolutely NOTHING may be posted on this subreddit relating to those episodes prior to their official release date. Anyone who does so will be directed to the other subreddit and banned from this one until the episode airs.
Traditional discussion threads for the Season 2 premiere and episode 2 will be stickied below during their official air dates. Anyone caught discussing episode 2 in the season premiere thread will be banned for a week.
Once the episodes are released, the normal spoiler policy requires any/all posts relating to the aired episode to be marked as spoiler and the title itself free of anything spoiler-related for 72 hours after the TV release (10am EST on the Tuesday following the release). Any posts not following this will be removed.
Please be considerate of your fellow Redditors.
Guys ,I hate to be the bearer of bad news but it seems that both the episodes Separate tides and "Escaping Expulsion" from the Paley Center Screening have been leaked online in HD and is shown on both YouTube and some piracy sites in HD before its official release on June 12th
My suggestion don't watch and ignore them until June 12th the official release date
Looking for primarily 20th or 21st century women writers, focused on the experiences of being a writer and working class. Also trying to diversify my list so that it's not just white women. Thanks for any suggestions!
got my booster shot the other day and because i didnt have my vaccine card on me they werent able to write on there that i got my booster. any way i can get proof that i got the booster?
Can some one comment with the link of the interview Undeclared had with paley in it's first year of airing? It was the one with Charlie Hunnam in it(he wasn't at the Paley ten year reunion). I can't seem to find it for whatever reason even though I saw it on youtube some time ago
Det รคr alltid roligt att se hur vissa gren av matematik korsar och mรถter varandra, fรถr man fรฅr en inblick av hur begreppen รคr fรถrbundna och insikt i deras beskaffenhet. Den Paley-Wiener Satsen รคr en sats som stรฅr i korsvรคgen (crossway?) mellan complexanalys och Fourieranalys och karakteriserar beteende av en funktions Fouriertransform och sjรคlva funktionen.
Vi bรถrjar med att sรคga att en hel funktion f: C --> C (alltsรฅ, en funktion som รคr holomorf i C) har exponentielltyp mindre eller lika med T om
fรถr varje eps > 0 finns det M > 0 sรฅ att |f(x)| <= M exp(|x| (T + eps)
Praktiskt taget, betyder det att vรฅr funktionen fรฅr inte vรคxa snabbare i modulos รคn en exp(|x|T)
Nu sรคger den Paley-Wiener Satsen att en funktion f i L2(R) vars Fouriertransform f^ kan fรถrlรคngas till en hel funktion av exponentielltyp lika eller mindre en T, รคr (nรคstan alltid) null utanfรถr intervalen [-T,T].
Intressant, vad? Det betyder att en funktions Fouriertransform alltid vรคxer jรคttesnabbt om funktionen har stรถd (support?) i den hela reallinjan!
Fรถr att bevisa satsen anvรคnder man nรฅgra smarta trick, Cauchys Integralformel (eller snarare, deformationsprincipen) och Phragmรฉn-Lindelรถf satsen, en sats som beskriver hur complexa funktioner av exponentielltyp beter sig om de รคr pรฅ nรฅgot sรคtt begrรคnsad. Satsen sรคger att om man har en "pizzaskiva" i complexplanen och om f (av exponentielltyp) รคr begrรคnsad i grรคnsen av skivan dรฅ รคr f begrรคnsad i den hela skivan!
Sรฅdana regelbundhetsatser vissar hur stark antagandet av holomorfi (det att vara holomorf??) faktiskt รคr pรฅ en complex funktion. Samma sak hรคnder med Liouvilles satsen, som sรคger att om en hel funktion f รคr begrรคnsad i den hela complexa planen, dรฅ รคr f faktiskt konstant!
Visst รคr complex analys roligt?
Please note that this site uses cookies to personalise content and adverts, to provide social media features, and to analyse web traffic. Click here for more information.